Well-informed Test Case Generation and Crash Reproduction

Abstract

Search-based test data generation approaches have come a long way over the past few years, but these approaches still have some limitations when it comes to exercising specific behavior for triggering particular kinds of faults (e.g., crashes or specific types of integration between classes/modules). In this thesis, we are investigating new fitness functions and evolutionary-based algorithms and techniques to tackle these limitations. We have defined multiple novel approaches for crash reproduction and class integration testing. Currently, we are still working on improving both crash reproduction and class integration testing.

Publication
IEEE 13th International Conference on Software Testing, Validation and Verification
Next
Previous

Related